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‘We consider the diffusive logistic equation

%;i = dV%u + ru(l — u),

supplemented by the nonlinear boundary condition
a(u)Vu -1+ (1 - a(w)u =0,

where « is a non-negative, non-decreasing function with ([0, 1]) C [0, 1]. When
regarded as an ecological model for an organism inhabiting a focal patch of its
habitat, the assumptions on « are intended to capture a tendency on the part of the
organism to remain in the habitat patch when it encounters the patch boundary that
increases with species density. Such a mechanism has been suggested in the ecological
literature as a means by which the dynamics of the organism at the scale of the patch
might differ from its local dynamics within the patch. Building upon earlier
examinations of the boundary-value problem by Cantrell and Cosner, we detail in
this paper the global disposition of biologically relevant equilibria when both 0 and 1
(the local carrying capacity within the patch) are equilibria. Our analysis relies on
global bifurcation theory and estimates for elliptic and parabolic partial differential
equations.

1. Introduction

In this paper we continue the examination of the diffusive logistic model

ou
— =dV3u+ ru(l — in £2 x (0, co),
ED (1-v) (0,00) (1.1)

a(w)Vu-n+ (1 —alu))u=0 on 9 x (0,00),
which began in [5,6]. In (1.1), v = u(z,t) denotes the density of a biological species

at spatial location z and time ¢, and {2 designates a focal patch of habitat for the
species. Mathematically, {2 is a bounded open domain in R¥ (in applications N is
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usually 1, 2 or 3) with sufficiently smooth boundary, d and r are positive parameters
giving the diffusion rate and intrinsic growth rate for the species, respectively,
and the carrying capacity in (1.1) has been scaled to 1. The novel aspect of (1.1)
lies in the inclusion of a density-dependent coefficient in the boundary condition.
Throughout [5,6], a(u) is assumed to be smooth, non-negative and non-decreasing
and to satisfy

o([0,1]) < [0,1]. (1.2)

In this modelling context, a Robin boundary condition of the form
a*Vu -+ (1 —a*)u=0, (1.3)

where o* is a fixed value in [0, 1], reflects in general terms the tension between the
tendency of the organism to leave the focal patch {2 when it reaches the boundary
and its tendency to return into the patch upon reaching the boundary. The tendency
to remain in {2 becomes more pronounced as «* increases, while the tendency
to leave {2 upon reaching the boundary becomes greater as a* decreases. When
a* =1, all organisms return into 2 upon reaching the boundary {a homogeneous
Neumann or reflecting boundary condition), while, at the other extreme, when a* =
0, all organisms leave (2 upon reaching the boundary (a homogeneous Dirichlet or
absorbing boundary condition). In this light, the assumptions on a(u) in [5,6] may
be interpreted as saying that the propensity of the organism in question to remain in
the patch upon reaching the boundary depends on the density of conspecifics along
the boundary. The organism is more likely to remain in the patch if the density of
conspecifics is relatively high along the boundary and less likely to remain if the
density there is low. Our motivation for incorporating such a feature into the model
was some empirical work on the Glanville fritillary butterfly [8].

In [8], the kind of density-dependent emigration from habitat patch boundaries
that we assume in [5,6] is shown to be a possible mechanism for inducing an Allee
effect [1,6] in the dynamics of the Glanville fritillary butterfly. An Allee effect is a
widely studied concept in ecology. Very roughly, it refers to a situation in which the
per capita population growth rate for a species declines with declining density when
the density is below a threshold level. Initially, our primary aim in formulating (1.1)
was to explore in a spatially explicit analytic modelling context whether one might
induce an Allee effect in the dynamics of an organism at the scale of a habitat
patch via density-dependent emigration from the patch along the boundary, and
we provide an affirmative answer to the question in [6]. For more detail on the
biological ramifications of the results and a discussion of Allee effects, we refer the
reader to [5,6].

As indicated, the initial purpose in [6] was to establish a modelling context in
which we could demonstrate that density-dependent emigration of an organism
along a habitat patch boundary could induce an Allee effect in the dynamics of
the organism in the habitat patch itself. Indeed, it is well known [4] that positive
solutions to a diffusive logistic equation in a bounded domain, when subject to a
fixed boundary condition of the form (1.3), either tend over time to a unique positive
equilibrium or tend over time to the zero equilibrium. Neither of these outcomes
constitutes an Allee effect. Hence, any Allee effect in the dynamics of an organism
modelled by (1.1) is attributable to the density-dependent term a(u). In examining
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(1.1), we found that we could readily employ either a principle of linearized stability
or the method of upper and lower solutions to detect an Allee effect under suitable
conditions on a(u). However, we also quickly realized that the inclusion of a(u)
substantially complicated the structure of the solutions to the problem, in particular
the structure of the positive equilibria. This realization has led to an exploration
of the mathematical structure of the positive solutions of (1.1) beyond that which
was needed to address the original biologically motivated question. Our first results
in this vein appeared in [5] and the current paper addresses some questions left
unanswered in that work.

In [5], we assume that o is non-negative, smooth and non-decreasing, and that
it satisfies (1.2). Beyond these basic assumptions, the most significant factors in
understanding the structure of positive equilibria to (1.1) are the values assigned
t0 a(0), a(l) and o/(1). Equilibria to (1.1) are solutions to

a(w)Vu-n+ (1 -a(u))u=0 ondf, (1.4)

V2u 4+ u(l—u) =0 in £, }
where A\ = r/d > 0. Whatever the value of «(0) € [0,1], there is a continuum
of positive solutions to (1.4) emanating from the ray {A:\ > 0} x {0} of trivial
equilibria to (1.1) in R x C*7(£2) at the point (A (£2),0), where X = AL (£2) is
the unique non-negative value for which

V3¢ +Ap=0 in £2, }

a(0)Ve-n+ (1-a(0))¢=0 ondf (1.5)

admits a positive solution. This continuum necessarily satisfies the alternatives of
the celebrated global bifurcation theorem of Rabinowitz [4,9]. When «(0) = 0, the
boundary condition in (1.5) reduces to a homogeneous Dirichlet condition. Note
that if «(0) == 0, solutions to the diffusive logistic equation vanishing on 042 are
always solutions to (1.4). Note also that in this case the boundary condition in (1.4)
factors into

w(f(u)Vu -+ (1 —a(uw))) =0, (1.6)

where B(u) is a{u)/u for u # 0 and £5(0) = a'(0) = 0. It follows that (1.4) can be
solved in more than one way, so that, strictly speaking, (1.4) is not well posed in
this case. However, if

a'(0) > 0, (1.7)

we may assume that G(R) C (6, R) for some fixed R > § > 0. In this case, if the
boundary condition in (1.1) is replaced by

Blu)Vu -+ (L —alu) =0 on df x(0,oc0), (1.8)

the problem is well posed by [3] and moreover, solutions to (1.1) corresponding
to positive initial data throughout 2 are uniquely determined as solutions to the
diffusive logistic equation satisfying (1.8). We assume in [5] that (1.7) holds if
a(0) = 0. In this case, we show in [5] that if {2 is not a ball in RY, the continuum
of positive equilibria to (1.1) emanating in R x C17(£2) from the ray of trivial
solutions at the point (A\}(£2),0) (such solutions necessarily satisfy homogeneous
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Dirichlet boundary conditions) is isolated from positive equilibria to (1.1) which
satisfy (1.8). (In the case in which {2 is & ball, these different types of positive
equilibria to (1.1) can sometimes link up.)

If (1) = 1, then points along the ray {(\,1) : A € R} in R x CY7(£2) are also
positive equilibrium solutions to (1.1). We show in [5] that equilibria to (1.1) whose
values in (2 lie in the open interval (0, 1) bifurcate from this ray of equilibria at the
point (Mg, 1), where Ag = 0 is the unique point at which the eigenvalue problem

V2p+Ap=0 in £, }

Vé-n—a/(l)p=0 ondf (1.9)

admits a solution ¢ with ¢ > 0 in 2. (If /(1) > 0, then Ag > 0). Indeed, the
continuum of equilibria (with values in (0,1) on {2) that emerges from {(A,1) :
A € R} at A = )¢ satisfies the alternatives of the global bifurcation theorem of
Rabinowitz relative to the ray of equilibria {(\, 1) : A € R}.

In [5], when a(1) = 1, we use Cy and C; to denote the continua of equilibria to (1.1)
with values in [0, 1] on {2 emanating from {(},0) : A € R} at A = )\3(0)(0) and from
{(A\1) : A € R} at A = Ag, respectively. We show that both Cg and C; are unbounded
in R x CH7(2) with the set {\ € R : (\,u) € C; for some non-trivial u with 0 <
u(z) < 1 on 2} unbounded in R, for 4 = 0, 1.

Note that solutions to (1.1) along the ray of equilibria {(A\,1) : A € R} are
‘non-trivial’ solutions relative to the ray of solutions {(\,0) : A € R}, and vice
versa. Counsequently, one way in which Cy could conceivably be such that the set
{A eR: (\u) € Cy for some non-trivial u with 0 < u(z) < 1 on 2} is unbounded
in R would be if Cy links up to {(A,1) : A € R}. Since (Xg,1) is the unique point
along the ray {()\,1) : A € R} at which such a linkage could occur, in such a
case Cp and C; would have to coincide. When «(0) = 0, equilibria emanating from
{(A\,1) : X € R} at A = X necessarily satisfy (1.8). So if a(0) = 0, ¢/(0) > 0 and
a'(1) > 0, the preceding scenario is excluded provided that 2 is not a ball in RY. In
this case, Cy and C; do not intersect. In particular, it follows that, for all sufficiently
large values of A, (1.1) admits at least three equilibria (including v = 1) with values
in (0,1] on £2 (see [5] for further detail).

When «(0) > 0, the boundary condition in (1.1) does not factor as in (1.6). It
follows that one may assume that a(R) C (4, R) for some fixed R > § > 0. The
results of Amann [3] may again be invoked to guarantee that (1.1) is well posed. It
is quite natural to ask whether Cy and C; are distinct (in which case (1.1) admits
at least three equilibria with values in (0,1] on (2 for all sufficiently large values of
A) or if, in fact, Cy and Cy coincide, in contrast to the case when «(0) = 0 and 2 is
not a ball in RY. We began an examination of this question in [5], but were only
able at the time to give a partial answer. We showed that if a(0) > 0, then Cy and
C1 coincide, provided that the function « in the boundary condition of (1.1) is such
that

a’(u) >0 and (1) < [a(0)]3. (1.10)
We established the result by showing that if (1.10) held, then the set

Iy = {u € CH7(0) : (\,u) is an equilibrium to (1.1) with 0 < u(z) < 1 on 2}
(1.11)
is empty for all sufficiently large values of A.
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In this paper, we are now able to establish that the conditions we posed in [5] via
(1.10) to have Cy and C; coincide are extraneous. Indeed, all that is required to have
Co and C; coincide when a(0) > 0 and a(1) = 1 is that a be smooth. Explicitly, we
require that o/(1) is finite. We present a proof of this result in the next section.

In §3, we consider what happens if the requirement that o’(1) is finite is lifted.
Here we show that if ¢/(1) = +oo0 but o is still Holder continuous at u = 1, then
Cy per se no longer exists (as bifurcation from 1 is no longer possible), while Cp
extends to +oo in the ) parameter. Since Ag in (1.9) tends to +oo as a’(1) — +o0,
this result is naturally viewed as a limiting case of the result of § 2.

2. The case o/(1) < oo

We first establish the following estimate.

THEOREM 2.1. Suppose that the function o(u) in (1.1) is continuously differen-
tiable on R with a(0) > 0, a(1) =1, and o/(1) > 0. If (A, u) is a solution of (1.4)
with A > 0 and uw(z) € (0,1) for z € £2, then either

(i) A< ’\}11(0)(”(2) +1 or

maxg((1/k) + 2|Vh|?/R?)

i) ALy () +1 <A< — ’
(i) a(O)( )+ ming ua(o)(Ai(o)(Q)+1)

where ua(o)(/\i(o)(ﬂ) +1) > 0 on §2 is the unique positive solution of

Vi + (/\}x(o)(ﬁ) +Du(l—u)=0 in £, 2.1)
a(0)Vu-n+ (1 —a0)u=0 ondn, '
and h > 0 on 2 is in C*7(2) and satisfies
V2h4+1=0 in,
1 -+ mn (2.2)
Vh-n+Kh=0 on 8.

Here the constant K is chosen so that
1—a
K > sup 1=afu) . (2.3)
uel0,1] l-u a(u)

Proof. Suppose that u is as in the hypotheses of the theorem and let w = 1 — wu.
Then w satisfies

—V?w+Iwu=0 in 02,
1—afu)
1—u

(2.4)

a(uw)Vw -1~ ( >wu =0 on 9.

As in [5], we let z = wh, where h satisfies (2.2) and (2.3). It follows from (2.4) that

z satisfies ) )
-V <—Vz) — i\72<— + Au =0 in £,
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Multiplying the first equation in (2.5) by z, integrating by parts and employing
(2.2) and (2.3), we obtain that

' 1 22 o1
-—/QZV' <I—L-5Vz> dm-{—/nl—ﬁv (ﬁ) dz
1 : 2 1
=_/Q]—ﬂ;w[2dx+/ﬂdiv <7§5Vz) dm+/92—2v2<7i> dz
1 o f [, l—oa(w) u \ =z "2 (1
= /Q h,z[Vz[ dz ./69 <K T u)) s dS—l—/ﬂ th A dz
271 2/VA]?
</ %;(7§+—‘Z;‘ )dw. (2.6)
o B2\ 12

Since a(u) = «(0) for all z € 842, it follows as in [5] that » is an upper solution
to (2.1) provided that A > /\;(O)(Q) + 1. Since €¢ is a lower solution to (2.1) for
e > 0 sufficiently small, where ¢ > 0 satisfies (1.5), we have that

U 2 Ua) (M) (2) +1) on 2, (2.7)

provided that A > /\3(0)((2) + 1. The desired result is now a consequence of (2.6)
and (2.7). O

By theorem 2.1, ITy in (1.11) is empty for all sufficiently large values of A. Thus,
the discussion in §1 shows that the only way in which Cy can be unbounded in
R x C™(£2) is if it contains the ray {(A,1) : A € R} and that the only way that C;
can be unbounded in R x C17(£2) is if it contains the ray of trivial solutions. So
theorem 2.1 has as an immediate consequence the following result.

THEOREM 2.2. Suppose that the function a(u) in (1.1) satisfies the hypotheses of
theorem 2.1. Then if Co C R x CY7(§2) is the continuum of equilibrium solutions
(M) to (1.1) with 0 < u < 1 on 2 which emanates from {()\,0) : A € R} at
X=X 0)(92), where AL ) (£2) is as in (1.5), and C; € Rx CH7(£2) is the continuum
of equilibrium solutions 8)\,u) to (1.1) with 0 < u < 1 on {2 which emanates from
{(\1): A eR} at A= Ay, where Ag is as in (1.9),

Co U (R X {0}) =C; U (]R X {1})

3. The case when a/(1) = +o0

Suppose that «(-) in (1.1) satisfies the hypotheses of the preceding section. Then
the rays of equilibria to (1.1) {(A,0) : A € R} and {(A\,1) : A € R} are con-
nected by a continuum of equilibrium solutions (\,u) with 0 < u < 1 in £2
at the points (A (2),0) and (Ao, 1), where AL (£2) and Ao are the principal
eigenvalues for (1.53 and (1.9), respectively. As noted in §1, Ag in (1.9) satisfies
limgr(1) 700 Ao = 400 [5, formula (3.21)]. As a result, as o/ (1) approaches 400, the
bifurcation diagram in R x C™7(£2) for the equilibria (\,u) to (1.1) with u val-
ues in [0,1] described in §2 appears to approximate in some sense the diagram
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described in [5] for the case when «(0) = 0. Our aim in this section is to examine
the global bifurcation structure for the problem when the conditions on a(u) in the
preceding section are altered so that «(u) is no longer smooth at u = 1. We still
require «(0) > 0, o increasing on [0,1] and «(1) = 1. But now, instead of having
a € CH([0,1]) we will now have o € C1([0,1)) N C°([0, 1]) for some o € (0,1) with

lim o(u) = +oo. (3.1)
u—1-

In this case, the rays {(},0) : A € R} and {(A,1) : A € R} in R x C*7(£2) remain as
equilibria to (1.1). Clearly, there is still bifurcation of equilibria to (1.1) with values
in (0,1)in 2 from {(A,0) : A € R} at A = )\gY(O)((Z). However, because o' (1) appears
in the boundary condition in (1.9), bifurcation from the ray {(A,1) : A € R} can
no longer be expected to occur at a finite value of A. The question becomes one
of determining the global disposition of the branch of equilibrium solutions (A, u)
to (1.1) with 0 < u(z) < 1 on §2 that emerges from {(},0) : A € R} at A = )\L(D)(Q).
Our approach here is to show that for A in a bounded interval [A1, Ag], there is a
constant C' = C([A1, Az], a(+), £2) < 1 so that for any equilibrium (A, ) to (1.1) with
A € [A1,X2] and 0 < u(z) < 1 on £2,

maxu(z) < C. (3.2)
TEL?
It follows from (3.2) that for all A € [A1, Ag] the values of u lie in a range where a(u)
remains smooth. As a result, standard regularity theory [7] results may be employed
to assure the boundedness of such solutions in C%7(£2). As a result, continuation
principles (e.g. [2, corollary 17.4]) imply that the continuum must extend to +oo
in the A parameter. S
We begin our discussion by showing that equilibrium solutions (A,u) to (1.1)
with 0 < w < 1 in §2 do not approach the ray {(\,1) : A > 0} in R x C17(§2).
Hence, there is no bifurcation of such equilibria from {(A,1) : A = 0}.

PROPOSITION 3.1. Suppose that a(u) in (1.1) satisfies o € C*([0,1)) N C([0,1]),
a(0) > 0, a is increasing, o(l) = 1 and lim,_ ;- o/(u) = +oco. Then the ray
{(\1) 2 X = 0} of equilibrium solutions to (1.1) is isolated in RY x C17(§2) from
equilibrium solutions (\,u) to (1.1) with 0 < u <1 on £2.

Proof. 1f the proposition fails to hold, there is some A>0 and equilibrium solutions
(An, un) to (1.1) so that 0 < u, < 1on 2 and (Ap,uyn) — (A, 1) in R x CH7(02). In
particular, u, converges uniformly to 1 on 942. Then we have

V2up, + Antin (1 — Uu,) =0 in £2,
(3.3)
o{tn ) Vg -1+ (1 — alun))u, =0 on 92
Let wy, =1 — uy in (3.3). Then
~V2wy, + Apwptt, =0 in £2,
— cy('u,n (3.4)

—a{Upn)Vwy, -1+ (1 '))un cw, =0 on df2.

1—u,
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From (3.4) we have that

V2w,

Wn

+ At =0 in £2. (3.5)

Using the divergence theorem to integrate (3.5) we have

n 1 n 2 3
—/ ——an-ndS——/ lvw,)i dx-}—/\n/ U, dz = 0.
80 Wn n Wi 2

From the second equation in (3.4),

1—alu,) U
1—up ofup)

2 —
)\n/undm:/ W—w:-l-dx+/ L= o(un)) _tn_4g
7 o w; oo \ 1—un Jofun)

] () e
Jagn 1—u, a(un)

which is a contradiction, since

/\T,,/ und:c——w—\/ dz = A|£2).
2 2

1
S w, M=
" Wp, - T

Hence,

0

In order to establish the main result of this section, we need the following a
priori estimate, which is a variant of results in [7] and whose proof is sketched in
the appendix.

PROPOSITION 3.2. Suppose that u satisfies
Viu = f(z) in 0,
Vu-n=g(z) ondf,
where f(z),g(z) € C7(2). Then the CH7(02) norm of u satisfies
lullonxgay < Collgliara + Ifllona + o)
where Cy is a constant depending only on v and 2.

PROPOSITION 3.3. Suppose that (A, u) is an equilibrium solution to (1.1) with 0 <
u < 1 on 2. Suppose that o € C°([0,1]), 0 < o < 1, with a(0) > 0, a increasing and
a(l) = 1. Then for vy € (0,0) there is a constant C* depending only on ||al|ce (jo,1)),
A and 2 so that ||ul|grv oy < C*.

Proof. We have that
V2 = fi(u) = du(u — 1) in {2,
Vuen =gt = (1-

m)u = h(u)u on df2.
Since a(0) > 0, the function h(u) =1 — (1/a(u)) € C7([0,1]).
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Owr intention now is to employ proposition 3.2 to estimate |lul|gi gy First
observe that
2oy = 1Al = wllovay < Cllullovay, (3.6)
where ' depends only on A.

We must also estimate [|g(u)(|gv(ay = |Mw)ullgv(g)- Here we begin with h(u) =
h(u(z)). We have

1)l gy = Sup [7(w)] + [2(u)]; 2,

where

[A(w)]y,0 = [h(u(@))],0 = sup lh(u(wl)): h(g(wzm.
mepen |71

Observe that since a(0) > 0, supg |h(u(z))| < C, where C depends on {2 and af-).
For [A(u)],.q, for z1, 25 € 2 with 21 # =2 and u(z1) # u(z2) we have

|h(w) (@) — h(w)(@2)] _ [h(w)(z1) — h(u)(z2)] (IU(wl) —U(xa)l>”_

|z1 — @2|7 o ulm) —u(m)l° |z1 — ma|7/°

It follows that [h(u)]y,0 < [Aleio,1([uly/00)7- We know in this case that |lullcg) <
1. Combining these observations, we obtain

IB(wullor(ay < 1MW)lle@) + (Moo, ([Uly/0,0)7 + 1AWl o [ulyz
< Cllulignm + llullgre(@)° +1), (3.7)

where C' depends on £2 and ||A|g=(jo,1))-
We may now employ proposition 3.2 in conjunction with (3.6) and (3.7) to obtain

lwlloray < Colllh(wulleray + I Wllcr gy + llulloway)
< C(llullgray + Ulullgrre (@) + 1), (3.8)

where C' depends on [A1, Ag], [|h]lge () and §2. There are two cases in (3.8). If
lullgvre () < 1, (3.8) reduces to

lullornay < Clllulor(ay +2), (3.9)
while if [Jullgv/e (@) > 1, it reduces to
lullor@) < Clllulloway + Il grre ) + 1), (3.10)

Now, given an & > 0, [7, lemma 6.35] implies there is a K = K(g, {2) so that for
B=ryorv/o

lullcaay < ellullcrag) + Kllullcw,
<elullgra + K, (3.11)

since |lullg(n) < 1. Combining (3.9) and (3.11) yields

“_u”cl,«y((z) < éE”u“cl,'y(ﬁ) +2C+CK (3.12)
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and combining (3.10) and (3.12) yields

”’U,Hcl,—y(fz) < 26_'61]’11,“01,7(_(‘2) -+ e -+ 2CK. (313)

Proposition 3.3 now follows from (3.12) and (3.13) by choosing € so that 2Ce = 3.
O

We may now establish the main result of this section. Our assertions about the
global disposition of the continuum of equilibrium solutions (\,u) to (1.1) with
0 < u < 1 on {2 that emanates from {(),0) : A € R} at A = /\}Y(D)(Q) follow
immediately.

THEOREM 3.4. Suppose that, in addition to the assumptions of proposition 3.3, the
function a(-) in (1.1) satisfies (3.1). Then if A[\1, As] denotes the set

{u: (\u) is an equilibrium solution to (1.1) with 0 <u <1 on 2, X € [A1, 2]},

there is a constant C = C([A1, Aa), a(+),2) < 1 so that supgu < C for any u €
AN, Aa].

Proof. As in the proof of proposition 3.1, we have that

2 s
/\/udw:/ @dm/ Lzalw) v 4o
Q n wo an 1-u a(u)

where w =1 —u. Since 0 < u < 1 on £,

" l-au) wu
NIz, >/ e S/ BN 3.14
Now let p(u) = u/a(u). Then p € C?([0,1]) and, for v € [0,1), p'(u) = (a(u) —
ue! (w))/[a(u)]?. By (3.1) there is a value u* € (0,1) so that p'(u) < 0 for v* < u <
1. Since a(1) = 1, it follows that

L >1 foru"<u<l (3.15)
afu)

. . s
Since lim,_,;~ o’(u) = 40

(u ;
u>1-46, (1-a(w)/(1-u)
§<1—u*)

We next claim that if 6 > 0 is sufficiently small, minpu < 1 — 4§ for any v €
AlA1, Aa]. Suppose otherwise. Let I > Aq|f2|/|012] be given. Then, for any § > 0
with § < §(K), there is a function u € A[A1, A2] so that minpu > 1 — 4. Since u
satisfies

/(
given K > 0, there is a § = §(K) > 0 so that if
> K. (Without loss of generality we may assume that

V2u 4 du(l —u) =0

in 2, ming v is achieved on 942. In particular, mingpu = 1 —6 > 1 — §(K). So, for
any z € 92, u(z) > 1 — §(K) > u*, where u* is as in (3.15). It follows that

/ 1zalw) v 405 kian).
oo l—u ou)

Hence, it follows from (3.14) that K < A9[2|/|0£2|, which is a contradiction.
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So we now have for any sufficiently small § > 0 that mingu < 1 -4 for any
u € A[)M1, Ag]. Proposition 3.3 implies there is a C* = C*([A1, A2], a(-), £2) so that
lullgrv(gy < C* for any u € A[A1, As]. In particular, [[uflci(m) < C*. Now let u €
A[A1, A2] correspond to A € [A1,Ao]. Let T € 92 so that u(Z) = ming u. Since
llullcr(ny < C*, it follows that

u(z) —u(Z) < C*lz — |

for z € 2. Hence,

w(z) < C%|z — | + u(Z)
<CHlz—Z|+1-46
<1—248
provided |z — Z| < §/3C*. Let r = 6/3C*. We have that if z € 2N B,(Z), u(z) <

—25.

Slfppose that the theorem is false. Then there is a sequence (A, uy ) of equilibrium
solutions to (1.1) with A, € [A1,Aq], 0 < up, < 1on 2 such that supgp u, — 1 as
n — oo. Let T, be the point on 842 associated with u, via u,(ZTy) = ming u,.
Without loss of generality, we may assume Z,, — z* € 942. For all sufficiently large
values of n, &, € B(z", 1r) so that

un(z) <1—26 for x € 82N B(z", 37). (3.16)
Now choose f € C%7(£2) so that
a(l—26) < f(z) <a(l—%6) on B(z*ir), (3.17)
f(z)=1 on 2\ B(z*,ir), : (3.18)
a(l-26) < f(z) <1 on 2, (3.19)

and consider the problem

V20 +Av(l—v) =0 in &2, } (3.20)

f@)Vo-n+ (1 - f(z))v=0 on 0.

It follows from (3.16)—(3.19) that, for all sufficiently large values of n, we have
a(un(z)) < f(z) for all z € 002. It now follows as in [5,6] that u,(z) is a lower
solution to (3.20) for all such n. By (3.17)-(3.19), 1 is a strict upper solution
to (3.20). So, for any sufficiently large n, the method of upper and lower solutions
guarantees the existence of a solution v to (3.20) with u,(z) < v(z) < 1 on £2. Since
such a v is necessarily unique [4], supp u, < supp v < 1 for all sufficiently large n,
which is a contradiction. Thus, the theorem must hold. O
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Appendix A. Sketch of the proof of proposition 3.2

Proposition 3.2 is an analogue of [7, theorem 8.33]. In the former result, C*+7(£2)
estimates on solutions to generalized Dirichlet boundary-value problems are given in
terms of the C(£2) norm of the solution, the C7(£2) norm of the internal data f and
the C*7(2) norm of the boundary data g. In proposition 3.2 the boundary operator
is now a Neumann operator and [7] does not explicitly state a companion result
to theorem 8.33. However, by carefully examining the proof of theorem 8.33 and
the way in which estimates for classical Dirichlet boundary problems are modified
in [7, §6.7] to treat other boundary operators, one may obtain proposition 3.2.
Recall that a priori estimates of the type in the statement of proposition 3.2 are
obtained by piecing together local a priori estimates throughout 2 and along 82.
Inside {2, the coefficients of the operator are approximated by constants in balls of
small radius, which allows one to make linear changes of coordinates that reduce
the problem locally to a Poisson equation. Along the boundary 82, an additional
initial change of coordinates that ‘flattens’ the boundary is needed, so that one
considers the problem in the intersection of a ball of small radius with a half-space
of dimension equal to that of 2. If non-zero boundary data g is prescribed in the
problem, it reduces to a homogeneous problem by finding a priori estimates for
v = u — 1 instead of u, where the boundary operator applied to 1 yields the
given boundary data g. For the case of a Dirichlet boundary operator, ¥ is simply
the boundary data g. In such a case, g needs to be extended so as to be defined
throughout 2 and g must have the level of regularity one desires for the solution
u. However, in the case of a Newmann operator, as in |7, §6.7), ¢ is defined locally
by what amounts to an appropriately scaled convolution of g against a suitable
compactly supported smooth positive test function (see 7, equation (6.68), §6.7]).
In this case, one obtains bounds on the Holder exponents of the partial derivatives
of 9 in'terms of the Hélder exponent of g, since 0z;(g # @) = g * O, for a smooth
compactly supported test function ¢, where ‘4’ denotes convolution. With this
accommodation, the estimate in proposition 3.2 follows as in [7, §8.1].
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